Influxdb
简介
Influxdb是知名的时序数据库产品。
原理
存储引擎
TSM 存储引擎主要由几个部分组成: cache、wal、tsm file、compactor。
Cache
cache 相当于是 LSM Tree 中的 memtable,在内存中是一个简单的 map 结构,这里的 key 为 seriesKey + (#!~#)分隔符 + filedName
,entry 相当于是一个按照时间排序的存放实际值的数组,具体结构如下:
type Cache struct {
commit sync.Mutex
mu sync.RWMutex
store map[string]*entry
size uint64 // 当前使用内存的大小
maxSize uint64 // 缓存最大值
// snapshots are the cache objects that are currently being written to tsm files
// they're kept in memory while flushing so they can be queried along with the cache.
// they are read only and should never be modified
// memtable 快照,用于写入 tsm 文件,只读 snapshot *Cache snapshotSize uint64 snapshotting bool
// This number is the number of pending or failed WriteSnaphot attempts since the last successful one.
snapshotAttempts int
stats *CacheStatistics
lastSnapshot time.Time
}
插入数据时,实际上是同时往 cache 与 wal 中写入数据,可以认为 cache 是 wal 文件中的数据在内存中的缓存。当 InfluxDB 启动时,会遍历所有的 wal 文件,重新构造 cache,这样即使系统出现故障,也不会导致数据的丢失。
**cache 中的数据并不是无限增长的,有一个 maxSize 参数用于控制当 cache 中的数据占用多少内存后就会将数据写入 tsm 文件。**如果不配置的话,默认上限为 25MB,每当 cache 中的数据达到阀值后,会将当前的 cache 进行一次快照,之后清空当前 cache 中的内容,再创建一个新的 wal 文件用于写入,剩下的 wal 文件最后会被删除,快照中的数据会经过排序写入一个新的 tsm 文件中。
目前的 cache 的设计有一个问题,当一个快照正在被写入一个新的 tsm 文件时,当前的 cache 由于大量数据写入,又达到了阀值,此时前一次快照还没有完全写入磁盘,InfluxDB 的做法是让后续的写入操作失败,用户需要自己处理,等待恢复后继续写入数据。
WAL
wal 文件的内容与内存中的 cache 相同,其作用就是为了持久化数据,当系统崩溃后可以通过 wal 文件恢复还没有写入到 tsm 文件中的数据。
由于数据是被顺序插入到 wal 文件中,所以写入效率非常高。但是如果写入的数据没有按照时间顺序排列,而是以杂乱无章的方式写入,数据将会根据时间路由到不同的 shard 中,每一个 shard 都有自己的 wal 文件,这样就不再是完全的顺序写入,对性能会有一定影响。看到官方社区有说后续会进行优化,只使用一个 wal 文件,而不是为每一个 shard 创建 wal 文件。
wal 单个文件达到一定大小后会进行分片,创建一个新的 wal 分片文件用于写入数据。
TSM file
单个 tsm file 大小最大为 2GB,用于存放数据。
TSM file 使用了自己设计的格式,对查询性能以及压缩方面进行了很多优化,在后面的章节会具体说明其文件结构。
Compactor
compactor 组件在后台持续运行,每隔 1 秒会检查一次是否有需要压缩合并的数据。
主要进行两种操作,一种是 cache 中的数据大小达到阀值后,进行快照,之后转存到一个新的 tsm 文件中。
另外一种就是合并当前的 tsm 文件,将多个小的 tsm 文件合并成一个,使每一个文件尽量达到单个文件的最大大小,减少文件的数量,并且一些数据的删除操作也是在这个时候完成。